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1. INTRODUCTION

The principal method for solving intertemporal savings and portfolio selection problems is numerical

dynamic programming. As an alternative we explore a neural network approach. Our neural net

approach has advantages for problems where the backward dynamic programming recursion is

numerically cumbersome. Examples in the life-cycle literature are problems with path dependent

decisions, such as saving in a separate retirement account, buying or renting a house, preferences

with habits or loss aversion, taxes, and timing of retirement. What these problems have in common

is that the solution method requires endogenous state variables, which values are not known while

moving backward in time. They need to be solved ‘on a grid’ of potential values, with the relevant

point on the grid only known at the very end of the recursion. With one or two endogenous state

variables this is still feasible, but in higher dimensions this becomes numerically awkward.

Arguments for exploring a forward solution method, as opposed to the backward recursion of

dynamic programming, are not new. Much of our motivation coincides with an early paper by

Chacko, Desai, Golts, and Novakovsky (2005). They approximate the optimal policies for consump-

tion and portfolio weights by a low order polynomial in the state variables. They then simulate

the policies using a large set of scenarios and determine the optimal parameters for the polynomial

solutions. Our approach replaces the polynomial functions by a very flexible neural network model.

The main advantage of the neural network is its flexibility. The cost of the full flexibility is a heavily

overparameterised model that requires regularisation.

The neural net is computationally very efficient and can quickly learn a reasonably good policy,

albeit not the true optimal one. Using standard activation functions on the output variables it can

also easily handle natural constraints such as non-negative consumption and portfolio weights.

The basic building block of the neural net approach is a set of scenarios. In a life-cycle model these

scenarios can be long, but are of finite length. Working with a set simulated scenarios for returns and

macro-economic state variables is also the starting point of the most successful backward solution

methods, such as for example Brandt, Goyal, Santa-Clara, and Stroud (2005). The difference, of

course, is that they develop an approximate backward solution method where the cross-section of

scenarios is used to approximate the expected utility at every decision node in the scenario tree.

Apart from Chacko et al. (2005) we are not aware of other papers that directly optimise the

policy function in a life-cycle model. In infinite horizon models, Judd (1998) discusses general

projection methods for policy function iterations. Chen, Cosimano, and Himonas (2014) provide a

literature review with a similar focus on the infinite horizon problem.

The current paper explores the performance of the numerical optimization routine. We start with

a few simple models. These examples serve to explain the method. Since the solution in the simple

examples is also available in closed form, we can compare the solutions. The main part of the paper

delves into a more challenging problem for which there does not exist an easy alternative solution.
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Much of recent research has stressed that individuals derive utility from comparing their current

payoffs relative to some benchmark such as a habit. We analyse a model with loss aversion, where

the benchmark is a function of current wealth. These models have been investigated for long-term

investors by Berkelaar, Kouwenberg, and Post (2004) and Van Bilsen, Laeven, and Nijman (2020).

Both papers derive closed-form solutions for long-term investors, but these solutions involve highly

leveraged positions in stocks. Imposing leverage and short-sell constraints requires a numerical

solution, which is somewhat cumbersome, because both actual wealth and the benchmark change

over time, which requires a two-dimensional grid of state variables. This is the type of models where

the neural net approach will be most beneficial.

2. NEURAL NETWORK POLICY FUNCTION

To explain the method we start with a standard multi-period investment problem. At time 0, the

start of the planning period, the investor’s indirect utility function is

J(W0, z0) = max
X

E0 [U(WT )] , (1)

where X = (x0, . . . , xT−1) is a sequence of M -vectors of portfolio weights. The portfolio generates

a return x′tRt+1 with Rt+1 the M -vector of gross returns on different assets. Arguments in the

value function J(W0, z0) are initial wealth W0 and a K-vector of state variables z0. Elements in

z include the returns Rt plus predictors of future returns. The final element in z is the remaining

time until the end of the planning horizon, τt = T − t. The preferences U(W ) are a well-behaved

utility function in final wealth (U ′(W ) > 0, U ′′(W ) < 0). In later sections we extend the model to

include more complicated preferences and intermediate consumption. Portfolio problem (1) is fairly

standard. In continuous time, assuming CRRA utility, this is the Merton model. In our discrete time

setup it can be solved by other methods as well, for example the backward dynamic programming

algorithm in Brandt et al. (2005) or the log-linear approximation in Jurek and Viceira (2011a). We

use these solutions to benchmark the performance of our NN algorithm.

The goal is to find a decision rule

xt = h(Wt, zt) (2)

that solves the maximisation problem (1) subject to the wealth constraint

Wt+1

Wt
= x′tRt+1 (3)

The optimal decision rule is a function of the current values of the state variables. For computational

feasibility, we wish to have the same function h(W, z) for all periods, instead of requiring separate

functions ht(zt,Wt) for each period. Two design features are important to obtain time-invariant
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solution functions. First, we account for the horizon dependence in the decision rule by including

τt in the inputs.

Second, we generate scenarios for the state variables that randomize the initial condition z0. In

practice, we simulate one very long sequence of N(T + 1) state variables (including the returns),

and cut this long time series into N non-overlapping scenarios of length T +1.1 Assuming that the

states are generated by a stationary dynamic process, the procedure results in initial conditions

that can be regarded draws from the unconditional distribution of z. An important assumption

underlying (2) is that the decisions only depend on the current state variable and not on the entire

history {z0, . . . , zt}. This is true for the life-cycle model with time-separable utility, but need not

be true in other models. Due to the time-invariant solution functions we achieve a huge dimension

reduction that will make it feasible to train models with a moderately long horizon using a limited

number of scenario paths. Although the solution function is time-invariant, decisions will vary over

time according to the evolution of the state variable zt, among them the time until maturity. In

each scenario we always set wealth at the same initial value W0.

Wt Wt+1

ψo ot ψx xt

zt dynamics zt+1

The graph shows the structure of the recursive neural network containing inputs (Wt, zt), a hidden layer with neurons
in the vector ot, and a decision layer for portfolio weights. The activation function ψo transforms the inputs into the
hidden layer outputs. The decision layer uses activation function ψx. State variables evolve exogenously; wealth
endogenously, depending on the decisions for x plus the realised returns that are part of zt+1.

Figure 1: Network architecture life-cycle model

We train a neural network that accepts as inputs starting wealth W0, a sequence of states zt

(t = 0, . . . , T − 1), and a sequence of return vectors Rt (t = 1, . . . , T ). The network returns the

portfolio weights xt = h(Wt, zt). We set up two layers that differ by the activation function and

number of nodes. Figure 1 provides a graphical representation of the network architecture. The

first layer is a hidden layer containing a flexible number of L neurons in the vector ot. For the

second layer, the decision layer, we fix the number of neurons to be equal to the number of assets.

The output from this layer are the portfolio weights. The final layer provides the intertemporal

connection for the evolution of wealth using the portfolio weights together with the returns. The

neural network recursively calculates final wealth WT . The architecture emphasises the difference

between the state variables Wt and zt. Wt is determined endogenously as a result of the decision

1A scenario has length T + 1 dated t = 0, . . . , T .
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variable xt, while zt is evolves exogenously.

In equations the network recursively processes the inputs as

ot = ψo(ao +Aozzt +AoWWt) (4)

xt = ψx(ax +Axoot) (5)

with ψo and ψx activation functions. The vectors ao, ax and AoW , and the matrices Aoz and Axo,

are parameters that are constant across all t, such that the output just varies with the input values.

As activation functions we use ‘ReLu’ for ψo and ‘softmax’ for ψx. The ‘softmax’ function ensures

that all portfolio weights are between zero and one and sum up to one.

Wealth at maturity is the final result that goes into the utility function, U(WT ), and defines the

loss on which the network will be trained. With N scenario paths for the state variables we obtain

N values WT,j of final wealth. The empirical loss function is the average loss over the N simulated

samples using the policy function x = h(W, z),

LOSS = − 1

N

N∑
j=1

U(WT,j) (6)

After training the network we use the following output as our policy function

h(z,W ) = (ψx ◦ ψo)(W, z) (7)

Along a specific scenario path j we then have the portfolio weights xt,j = h(zt,j ,Wt,j) for all periods

t < T . Following wealth along the optimal paths we obtain the value function as the negative of

(6).

In various cases we have theoretical results about the structure of the solution. For example,

with CRRA utility wealth does not enter the portfolio solution. In addition, when returns have

time-invariant mean and covariance matrix, the solution does not depend on the investment hori-

zon. For other utility functions, for example SAHARA (Chen, Pelsser, and Vellekoop 2011), the

optimal portfolio depends on wealth. In the large literature on strategic asset allocation (Campbell

and Viceira 2002) predictability of returns has a large effect on the optimal allocation to equity

investments.

The solution is written as the unconditional function xt = h(zt,Wt), so we can obtain optimal

portfolio for any value of the state variables. Accuracy of the solution obviously depends on whether

the chose point (z̃, W̃ ) is located relative to the training data the network has seen.

When the solution depends on wealth, numerical backward dynamic programming solutions

become more cumbersome, as they must be solved ‘on a grid’. At each time step the solution must

be computed for a range of values for wealth. More challenging from an optimisation perspective are
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preferences that involve more than just wealth. One example is Loss Aversion. In Berkelaar et al.

(2004) the utility depends on final wealth relative to a benchmark W̄T , which itself may change over

time depending on past returns. We then have two endogenous state variables and would require a

bivariate grid in a backward solution. It is here that the neural net method should have its largest

computational benefits.

A second extension is intermediate consumption. With time-separable utility the problem can

be written as

J(W0, z0, y0) = max
{Ct,xt}

E0

[
T−1∑
t=0

δtU(Ct) +B(WT )

]
, (8)

where Ct is consumption, and δ a time preference parameter. The value function has labor income y

as an additional argument. For an individual, labour income is partly a function of the endogenous

labour supply decision. In the current version of our algorithms we don’t take this into account. We

similarly leave labour income exogonously given as a function of age and individual characteristics.

The goal is to find portfolio and consumption functions(
xt

Ct

)
=

(
hC(Wt, zt)

hx(Wt, zt)

)
= h(Wt, zt) (9)

that solve the maximisation problem subject to the budget constraint

Wt+1 = (Wt − Ct + yt)x
′
tRt+1 (10)

Figure 2 shows the extended architecture. It has an additional layer for the consumption decision

with an activation function ψC , which we take as ‘tanh’ generating a positive consumption / wealth

ratio in every state. Given the consumption-wealth ratio ct, consumption follows as Ct = ctWt.

Wt Wt+1

ψo ot ψx xt

ψc Ct

zt dynamics zt+1

The graph shows the structure of the recursive neural network containing inputs (Wt, zt), a hidden layer with neurons
in the vector ot, and decision layers for consumption and portfolio weights.

Figure 2: recursive NN with consumption
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Apart from the additional layer we proceed as before. The network iterates through all periods

until maturity and collects all Ct (t = 0, . . . , T − 1) together with WT along all scenario paths. The

loss function is the negative of the realised utility,

LOSS = − 1

N

N∑
j=1

(
T−1∑
t=0

U(Ct,j) +B(WT,j)

)
(11)

which the algorithm uses to fit the network parameters.

Summarizing, the neural network uses four key steps:

1. Simulate the economic model to generate a large number of scenarios.

2. A sufficiently flexible layer setup that uses the information generated in the simulations as

inputs and returns values of our decision variables.

3. A layer that has no trainable parameters, but takes the decisions and plugs them into the

constraints to ensure that the strategies are feasible.

4. The computation of the criterion function in the loss function used.

3. BENCHMARK MODELS: CRRA UTILITY

In this section, we apply our solution method to cases where an approximate closed-form solution

exists. For these exercises, we assume that the investor has a CRRA utility function with a risk-

aversion parameter of 10 and a subjective discount factor of 0.96. We simulate quarterly returns

for 5 years 100,000 times for the training data. The validation dataset contains 30,000 sequences of

quarterly returns for 5 years. Finally, we test the solution on 100,000 sequences that again simulate

quarterly returns over 5 years.

3.1 Identically and Independently Distributed Returns

We assume that log returns follow the following distribution

rt+∆t = ln(St+∆t)− ln(St) ∼ N
(
(µ− 1

2σ
2)∆t, σ2∆t

)
(12)

with µ = 0.1 and σ = 0.2. The log risk-free rate is constant at rf = 0.05. The investor has a horizon

of 5 years and rebalances every quarter (∆t = 1/4). With these assumptions, the optimal portfolio

weight on the stock is approximately (Campbell 2018)

xt =
µ− rf
γσ2

= 0.1003 (13)
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The solution is approximate since a portfolio return of a lognormal stock return and a constant

risk-free rate is not exactly lognormally distributed.

The first test for the NN methodology is if it will be able to find this very simple constant

solution if we feed it with a more general potential solution function h(z,W ) with z including

irrelevant state variables: the part return rt, the length of the planning horizon τt, as well as the

current wealth, none of which should matter in the solution function.

3.1.1 Maximizing Utility of Terminal Wealth

This problem constitutes a low bar for the procedure to clear. As with any numerical procedure

based on simulations, the results will contain some variation. For this exercise, we normalize the

value of the starting wealth to 1.

We use the policy function found by training the neural network and compare the outcomes to

the approximate optimal solution when using the 100,000 sequences of the test dataset. The results

are given in Figure 3. The resulting distribution of the realizations of the terminal wealth of each

simulated path can be found on the right side of the upper row of Figure 3. We plot the optimal

solution with light red bars and the results using the NN method with light blue bars, which results

in a light purple bar for the overlapping cases. We see that both distributions are basically on

top of each other, implying that there is no economically significant difference between them. The

difference in certainty equivalent return using the average realized utility is a fraction of a basis

point.

We show the resulting weights on the risky assets in the left panel of the upper row of Figure

3. We can see that there is some variation around the optimal solution for the NN methodology,

i.e., the estimated exposures to the irrelevant state variables will not equal exactly zero. However,

we see that the average portfolio weight is very close to the optimal solution, and the differences

are mostly much smaller than one percentage point. Finally, we show a violin plot of the weights

for each quarter in the lower part of Figure 3. We see that the average weight is very close to the

optimal solution, which is plotted as the red line. Again, the variation stems from the fact that the

weights in the functions are not trained to be exactly zero.

Summarizing, we see that the method performs well in this simple exercise. Note that we did not

use any prior knowledge to steer the method to the optimal solution, but included several redundant

state variables that increase the amount of learning that needs to take place. One obvious way to

use prior knowledge would be to restrict the number of states used in the policy function or not

use any states at all. In this case, the only free parameters would be the bias term, resulting in a

mechanically constant portfolio policy.
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Figure 3: This figure shows the performance of the NN methodology in the case the investor
maximizes the utility of terminal wealth and the economy follows an i.i.d. process. The upper row
shows the distribution of the terminal wealth for each sequence of the test data when using the
optimal solution in light red and when using the policy function in light blue. For the case in which
both distributions overlap, the color turns light purple. The right side of the upper row shows
the distribution of the weight on the risky asset for the policy function across all time points and
sequences of the test data in light blue, the optimal solution is plotted as a red line. The lower
row of the figure shows a violin plot for the portfolio weights at each point in time as well as the
optimal solution as a red line.
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3.1.2 Solving the Consumption and Portfolio Problem

In the case of i.i.d. returns and CRRA utility, we can determine the optimal portfolio weight as2

E
(
R−γ

P,tRt

)
= RfE

(
R−γ

P,t

)
(14)

with RP,t denoting the portfolio return, which is a function of the weight of the risky asset. We

can use the unconditional expectation since the returns are i.i.d. Moreover, the optimal weight is

constant. The optimal consumption-wealth ratio at each t is given by

ct =
a1ct+1

(1 + a1ct+1)
(15)

with cT = 1 and a1 =
[
δE
(
R−γ

P,t

)]−1/γ
. This results in a consumption stream for each t of

Ct = ctWt−1 (16)

Our policy function is found by using a neural network containing a “relu” activation function

and 10 nodes for the hidden layer. The decision layer for the portfolio weights uses a “softmax” and

the consumption wealth ratio a “sigmoid” activation function, respectively. As all consumption has

to be financed by the portfolio return and the initial wealth level, we normalize the initial wealth

to 10 in this exercise.

Figure 4 shows the results for the NN methodology in comparison to the optimal solution. The

upper left graph shows the histogram for the realized utility values across all 100,000 test sequences.

We see that there is a large overlap between both solutions. In terms of expected utility, the NN

methodology returns a value of -971.49 vs. an optimal value of -950.48. To give economic meaning

to the difference in expected utility, we compute the certainty equivalent as a constant consumption

stream that would result in a utility value equal to the expected utility. The result is a value of

0.508 for the optimum and a value of 0.507 for the NN methodology, which is over 99.7% of the

optimum.

The resulting portfolio policies can be seen in the upper right as well as in the lower left graph

shown in Figure 4. The graph in the upper right corner depicts the histogram for the portfolio

weights on the risky asset over all time points across all sequences in the test data in light blue

and the optimal weight as a red line. We see that the NN methodology puts, on average, about 30

basis points more weight into the risky asset than optimal. In addition, we see that the histogram

resembles multiple small distributions, which is due to the effect of time to maturity, which can be

seen in the lower left-hand graph of the figure. The graph shows the violin plots of the portfolio

weights for each quarter across all test sequences as well as the optimal solution as a red line.

2See, e.g., Pennacchi (2008).

9



2500 2000 1500 1000 500
0.00000

0.00025

0.00050

0.00075

0.00100

0.00125

0.00150

0.00175

0.00200 Optimal
Policy

0.100 0.101 0.102 0.103 0.104 0.105 0.106
0

100

200

300

400

500

600

700

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
0.080

0.085

0.090

0.095

0.100

0.105

0.110

0.115

0.120

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

0.1

0.2

0.3

0.4

0.5

Figure 4: This figure shows the performance of the NN methodology in the case the investor
maximizes the utility of terminal wealth and the economy follows an i.i.d. process. The upper row
shows the distribution of the realized utility results for each sequence of the test data when using
the optimal solution in light red and when using the policy function in light blue. For the case in
which both distributions overlap, the color turns light purple. The right side of the upper row shows
the distribution of the weight on the risky asset for the policy function across all time points and
sequences of the test data in light blue, the optimal solution is plotted as a red line. The left-hand
side of the lower row of the figure shows the violin plots for the portfolio weights at each point in
time as well as the optimal solution as a red line. On the right-hand side of the lower row, we see
the violin plots of the consumption-wealth ratio for each period in blue together with the optimal
value depicted in red.

10



Table 1: This table shows the average values for the portfolio weights and the consumption levels
for the optimal solution and the values found by using the policy function of the NN methodology

Period Optimal Policy

Weight Consume Weight Consume

Period 0 0.100 0.510 0.106 0.509
Period 1 0.100 0.509 0.106 0.510
Period 2 0.100 0.507 0.106 0.509
Period 3 0.100 0.505 0.106 0.506
Period 4 0.100 0.503 0.105 0.502
Period 5 0.100 0.501 0.105 0.501
Period 6 0.100 0.500 0.104 0.502
Period 7 0.100 0.498 0.103 0.500
Period 8 0.100 0.496 0.103 0.496
Period 9 0.100 0.494 0.102 0.494
Period 10 0.100 0.493 0.102 0.497
Period 11 0.100 0.491 0.102 0.494
Period 12 0.100 0.489 0.103 0.487
Period 13 0.100 0.488 0.102 0.482
Period 14 0.100 0.486 0.102 0.494
Period 15 0.100 0.484 0.101 0.491
Period 16 0.100 0.482 0.100 0.473
Period 17 0.100 0.481 0.100 0.469
Period 18 0.100 0.479 0.102 0.517
Period 19 0.100 0.477 0.104 0.453
Period 20 - 0.476 - 0.467

We see that the policy function shows little variation across the state variables that are not the

time-to-maturity. This can be seen since the violin plots are very tight around the mean at every

point in time, but the variation in portfolio weights comes mainly from the value of the mean at

each time point.

Finally, the graph on the lower right-hand of the figure shows the violin plots for the consumption-

wealth ratio that results from the policy function of the NN methodology in blue as well as the

optimal value, shown in red, for each quarter. We see that in the first 18 quarters, there is almost no

difference between the policy function values and the optimal ratio. Only in the last two quarters

can we see a small difference between the values. Again, the dependence on the state variables

other than time-to-maturity is small, as the box plots are very tight. The variation comes almost

exclusively from the time-to-maturity, which is optimal.

To give a numerical overview of the results, we present the average values of the portfolio weights

and consumption levels in Table 1. The means for the portfolio weight are all less than 0.7 percentage
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points away from the optimal solution. More interestingly, we can see that the consumption levels

are very close to the optimal consumption levels.

In summary, we see that the NN methodology performs well in this slightly more complicated

setup than shown in Section 3.1.1. All differences are economically insignificant.

3.2 Predictable Returns

For this exercise, we follow the setup in Section 3.2 of Brandt et al. (2005) and assume the following

dynamics for quarterly stock returns

ret+1 = 0.227 + 0.06dpt + εrt+1 (17)

dpt+1 = −0.155 + 0.958dpt + εdt+1 (18)

with ret denoting the excess log stock return, dpt denoting the log dividend yield, and εrt and εdt de-

noting residuals from a bivariate normal distribution with variances 0.006 and 0.0049, respectively,

and a covariance of -0.0051. In addition, we assume that the maturity is 5 years, i.e., we have a

20-period problem with each period comprising one quarter.

3.3 Maximizing Utility of Terminal Wealth

For this setup Jurek and Viceira (2011b) developed an approximate solution. The policy function

is given

x
(t)
T−t = A

(t)
0 +A

(t)
1 zT−t (19)

with zT−t denoting the vector containing the state variables, in our case the excess return and the

log dividend-price ratio. The parameters A
(t)
0 and A

(t)
1 are functions of the model parameters, as

shown in the appendix to the paper by Jurek and Viceira (2011b). Note that the parameters are

time-dependent and are found recursively by using backward induction. Since the portfolio policy

does not restrict the weight on the risky asset to be between zero and one, we impose this restriction

in our simulation exercise by setting the output to one (zero) in case the resulting weight using

equation (19) is above one (below zero).

We use 10 nodes for the hidden layer together with a “relu” activation function. The decision

layer for the portfolio policy uses a “softmax” layer. Again, we simulate 100,000 sequences of 20

quarters each to test the policy function fitted by the neural network, i.e., the network has no prior

exposure to this data.

The main result can be found in Figure 5, which shows the distribution of the terminal wealth

across the testing sequences on the left-hand side of the upper row. We see that the results are very
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similar. In terms of numerical outcomes, we can state that the difference in certainty equivalent

returns between the two portfolio policies is 2.1 basis points per year.

To get more insight into the performance of the NN methodology, we show the impact of the

time-to-maturity on the portfolio weight depicted on the right-hand side of the upper row of Figure

5. For this graph, we set the value of the risk-free rate to 1.5%, the risky asset return to 2.5%, and

the value of wealth to the starting wealth of 1.0. We use three values for the log dividend price

ratios, namely -3.6, -3.6, and -3.7. Finally, we vary the value for the period under consideration

from 0 to 20. As expected, the optimal exposure to the risky asset is downward sloping across time,

i.e., it falls if the time-to-maturity gets shorter. It is interesting to see that the policy function is

also monotonically downward sloping, as the optimal solution. However, the slope is steeper than

optimal. The lower row in Figure 5 shows the violin plots for the portfolio weight for the policy

function method superimposed on the approximately optimal solutions on the left-hand side. The

optimal solutions are in red, the policy function outcomes in blue, and the overlapping part in

purple. We can see that the variation in optimal portfolio policies is large since it depends on the

time to maturity as well as on the value of the dividend-price ratio. We see again, that the optimal

policy is downward sloping with time passing and that the slope for the average decision is slightly

steeper for the policy function, depicted in blue. The right-hand side of the second row in Figure

5 shows the optimal portfolio decision across the states of the world after 10 periods, i.e., halfway

through the 5 years. We plot the histogram of the log dividend-price ratio using 100 bins in grey

and compute the average portfolio decision for each bin in blue, for the optimal decision, and in

red, for the outcome of the NN methodology. The portfolio decision should be constant for each

bin since the log dividend-price ratio is the only state variable in our economy. However, note that

we also pass redundant state variables to the neural network, whose exposures are not estimated

to be exactly zero, which leads to small variations in the weights for the NN methodology. We

see that the policy function results closely follows the optimal solution across a large part of the

distribution. Only for the right tail do we see small differences, as the policy function is slower in

approaching the upper limit of 1.

Finally, we show the average portfolio policies across periods for the optimal values and the

policy function values in Table 2. We see that the averages differ by less than 3 percentage points

and that the slope of the policy function is steeper, it starts at 39.2% at Period 0 and ends at 15.5%

at Period 20, whereas the optimal method goes from 36.9% to 18.6%.

In summary, we note that the NN methodology approximates the solution using backward in-

duction well. The differences in certainty equivalent returns are economically insignificant. We also

see that basic properties like a downward-sloping portfolio weight over time are also present when

estimating the policy function using a neural network. We want to note again that we have not

used any prior knowledge when setting up the structure of the network. Like in the i.i.d. case, there

are redundant state variables that we pass to the policy function. These are the asset returns and
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Figure 5: This figure shows the performance of the NN methodology in the case the investor
maximizes the utility of terminal wealth and the economy follows an i.i.d. process. The upper row
shows the distribution of the terminal wealth for each sequence of the test data when using the
optimal solution in light red and when using the policy function in light blue. For the case in which
both distributions overlap, the color turns light purple. The right side of the upper row shows
the distribution of the weight on the risky asset for the policy function across all time points and
sequences of the test data in light blue, the optimal solution is plotted as a red line. The lower
row of the figure shows a violin plot for the portfolio weights at each point in time as well as the
optimal solution as a red line.
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Table 2: This table shows the average value of weight on the stock for the backward induction
method and the policy function method.

Period Back. Ind. Policy

Period 0 0.369 0.392
Period 1 0.359 0.379
Period 2 0.349 0.366
Period 3 0.339 0.352
Period 4 0.328 0.339
Period 5 0.318 0.326
Period 6 0.308 0.313
Period 7 0.298 0.299
Period 8 0.288 0.287
Period 9 0.278 0.273

Period 10 0.268 0.261
Period 11 0.258 0.249
Period 12 0.248 0.236
Period 13 0.239 0.224
Period 14 0.230 0.213
Period 15 0.220 0.202
Period 16 0.211 0.190
Period 17 0.203 0.180
Period 18 0.194 0.169
Period 19 0.186 0.159

15



the value of the wealth for the model under consideration in this section.

3.4 Solving the Consumption and Portfolio Problem

For this case, we have no closed-form solution benchmark. The closest setup to ours can be found

in Campbell and Viceira (1999). In that paper, the investor is infinitely lived and has recursive

utility. By setting the intertemporal elasticity of substitution (IES) equal to the coefficient of risk

aversion the solution applies to a CRRA investor. We will not directly compare the outcomes of the

NN methodology to the approximate optimal strategy developed in Campbell and Viceira (1999)

since we assume a finite-lived investor. Therefore, the outcomes using the NN methodology will be

superior to the strategy that assumes an infinite-lived agent when the subjective discount factor

is 0.96. Instead of re-calibrating the subjective discount factor, we will compare our results to the

paper by Campbell and Viceira (1999) qualitatively.

The outcomes using the NN methodology can be found in Figure 6. The graphs on the first

row of the figure show the distribution of portfolio weights for each period on the left-hand side

and the distribution of consumption levels on the right. We see that the average portfolio weight is

downward sloping, whereas the consumption level has no clear trend.

More of interest is the analysis in the following rows of the figure. The second row shows how the

weight of the stock in the portfolio. We show the decisions across all test sequences after 10 periods,

i.e., halfway through the 5 years. We compute the cumulative stock return for each sequence and

create 100 bins, which form the basis for the histogram shown in grey on the left-hand side of the

second row and third row. For each of the bins, we compute the average portfolio weight that the

investor chooses (second row) or the consumption decisions (third row) and plot these decisions

as the black line in the graphs. The right-hand side of the second row and the last row show the

portfolio and consumption decisions as a function of the dividend-price ratio.

Concerning the portfolio decision in the second row, we see that the investor reacts to chang-

ing investment opportunities, as the portfolio decisions are no longer constant across states. As

expected, we see that the weight of the stock goes up in case expected returns increase. Since the

coefficient on the log dividend-price ratio in Equation (17) is positive the expected return increases

with the value of this state variable. This explains the functional form of the line in the graph on

the right side of row two in Figure 6. The portfolio weight is close to zero for very small values of the

log dividend-price ratio and increases quickly when this variable increases beyond -3.8, approaching

one at the right end of the graph. This is qualitatively what Campbell and Viceira (1999) show in

their Figure I on p. 457. The main difference to our result is that the portfolio weights are restricted

to be between zero and one, which is not the case in the analysis of Campbell and Viceira (1999),

leading to a linear relation between the state variable and the portfolio weight. The graph on the

left-hand side of row two shows the portfolio decisions as a function of the past cumulative returns
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Figure 6: This figure shows the performance of the NN methodology in the case the investor
maximizes the utility of terminal wealth and the economy follows an i.i.d. process. The upper row
shows the distribution of the realized utility results for each sequence of the test data when using
the optimal solution in light red and when using the policy function in light blue. For the case in
which both distributions overlap, the color turns light purple. The right side of the upper row shows
the distribution of the weight on the risky asset for the policy function across all time points and
sequences of the test data in light blue, the optimal solution is plotted as a red line. The left-hand
side of the lower row of the figure shows the violin plots for the portfolio weights at each point in
time as well as the optimal solution as a red line. On the right-hand side of the lower row, we see
the violin plots of the consumption-wealth ratio for each period in blue together with the optimal
value depicted in red.

17



on the stock. Since the return process is mean reverting, we see that the average portfolio weight

tends to decrease with increasing prior cumulative returns.

Turning to the third row of Figure 6, we see the variation of the consumption-wealth ratio across

states. The investor increases the consumption-wealth ratio in case expected returns go up, which

can be seen in the graph on the left-hand side of the third row of the figure. The consumption-

wealth ratio is increasing with the value of the log dividend-price ratio, where the latter implies

a higher expected return going forward. A similar relation can be found in Figure II.b on p. 463

of Campbell and Viceira (1999). In their paper, the relation between the expected log return and

the consumption-wealth ratio increases if the IES parameter is below one. This is the case for our

analysis, since we have γ = 10 and IES = 1/γ. The left-hand side of the third row shows the

consumption-wealth ratio as a function of past cumulative returns. As mentioned above, the mean

reversion property of the return process implies that expected returns going forward are lower if

past returns are large. This results in a downward-sloping consumption-wealth ratio.

In summary, we note that, although we are not able to compare the direct numerical results

of the NN methodology to an approximate closed-form solution, we see that the outcomes of the

method can replicate portfolio and consumption decisions qualitatively that have been found in

the literature. Taking all results for the CRRA investor into account, we are confident that the NN

methodology is an efficient algorithm to determine policy functions for the optimization of life-cycle

models.

4. LOSS-AVERSION UTILITY FUNCTION

We now move on from the benchmark specification of a CRRA investor and assume the utility

of the investor follows the two-part power utility function developed by Tversky and Kahneman

(1992). In particular, we assume that

U(Ct) =

(Ct − θ)γG Ct ≥ θ

−κ (θ − Ct)
γL Ct < θ

(20)

with γG ∈ (0, 1) and γL > 0 denoting the curvature parameters for the gain and the loss domain,

respectively. The parameter κ is the loss-aversion parameter and θ denotes the reference level of

consumption, or terminal wealth, for the case the investor aims to maximize the utility of terminal

wealth.

The solution to the dynamic optimization problem increases in complexity since the decisions

are no longer wealth-independent. This can be seen by the fact that relative risk-aversion is no

longer constant, but depends on how far the current consumption level is from the reference level,
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i.e.,

−CtUCC(Ct)

UC(Ct)
=


(1− γG)

Ct
Ct−θ , if Ct > θ

+∞, if Ct = θ

−κ (1− γL)
Ct

θ−Ct
, if Ct < θ

(21)

The main impact of solving the problem using backward induction methods is that the decision at

each time t depends on the current wealth level, which is a function of past decisions that are not

known when using backward induction. The usual way to deal with this problem is to solve the

problem on a grid, which increases the computational burden considerably. This is one of the main

advantages of the NN methodology since we use an algorithm that goes forward in time.

Although there is no approximate closed-form solution for discrete-time models, Berkelaar et al.

(2004) and Van Bilsen et al. (2020) provide solutions for continuous-time models. The paper by

Berkelaar et al. (2004) solves the problem of maximizing the utility of terminal wealth, whereas Van

Bilsen et al. (2020) solves the consumption and portfolio problem. Both papers provide closed-form

solutions for i.i.d. economies and unrestricted portfolio weights. Our approach differs in terms of the

economic model. We assume a discrete-time model and it is straightforward to include non-constant

investment opportunities into the model. Second, we restrict the portfolio weights to avoid values

for the portfolio weights that could not be implemented in practice.

4.1 Identically and Independently Distributed Returns

4.1.1 Maximizing Utility of Terminal Wealth

We use the same data-generating process as described in Section 3.1. As expected, the portfolio

strategy of the loss-averse investor differs considerably from the CRRA results. We summarize

the results in Figure 7, where we use the results of applying the NN methodology on the 100,000

test sequences. The graph in the first row on the left-hand side of Figure 7 shows the distribution

of wealth at maturity. We see that the outcomes are concentrated in a tight interval above the

reference level. To understand this outcome, we plot the portfolio decisions and values of wealth as

a function of realized cumulative returns in the lower row of Figure 7. We show the decisions across

all test sequences after 10 periods, i.e., halfway through the 5 years. We compute the cumulative

stock return for each sequence and create 100 bins, which form the basis for the histogram shown

in grey in both graphs of the lower row. For each of the bins, we compute the average portfolio

weight that the investor chooses and plot these decisions as the black line in the left-hand graph of

the second row in Figure 7.

The first striking result is that the portfolio decision is not constant, even in the case of an i.i.d.

economy. In case of low past cumulative returns, the investor increases the portfolio weight on the
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Figure 7: This figure shows the performance of the NN methodology in the case the loss-averse
investor maximizes the utility of terminal wealth and the economy follows an i.i.d. process. The
upper row shows the distribution of the terminal wealth for each sequence of the test data when
using the policy function in light blue. The right side of the upper row shows a violin plot for
the portfolio weights at each point in time. In the second row, we plot the portfolio decisions and
values of wealth as a function of realized cumulative returns. We show the decisions across all test
sequences after 10 periods, i.e., halfway through the 5 years. We compute the cumulative stock
return for each sequence and create 100 bins, which form the basis for the histogram shown in grey
in both graphs of the lower row. For each of the bins, we compute the average portfolio weight that
the investor chooses and plot these decisions as the black line.
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stock up until the limit of 100% for large negative returns. The reason is, that the initial wealth

in these cases is below the threshold level θ, as can be seen on the right-hand graph of the same

line in the figure. For these states of the world, the investor will increase the portfolio allocation to

the stock, to push the level of wealth up towards the value of θ. In states of the world where the

cumulative stock return is in the middle of the distribution, i.e., where the value of wealth is close

to the reference level, the investor scales down the portfolio weight of the stock, which results in a

large concentration of the distribution of terminal wealth around the threshold. If returns become

large the portfolio allocation to the stock increases again. This portfolio strategy results in a level

of wealth that does not increase linearly with the realized stock return, as can be seen in the right-

hand side graph. Finally, we see a maturity effect on the portfolio allocation in the right-hand side

of the graph in the first row of Figure 7. This graph plots the violin plots for the portfolio decisions

at each point in time. We see that the average portfolio allocation to the stock decreases with time.

4.1.2 Solving the Consumption and Portfolio Problem

The results of this exercise are collected in Figure 8. As before, we plot the outcomes after using

the policy function of the NN method on the 100,000 sequences of the test sample. The first row of

the figure shows the box plots for the portfolio allocation to the stock on the left-hand side and the

consumption decision on the right-hand side. We see on the left side, that the average weight on

the stock is increasing with time. Equally striking is the picture of the consumption levels on the

right-hand side. We see that the average consumption levels are held almost constant with tight

bands around the reference level for the first 15 periods. Only then does the average decrease and

the variance around the mean increase, which results due to the subjective discount factor.

The second and third rows of Figure 7 show the decisions across states instead of across time.

Moving to the second row, we see the decisions on the portfolio weight after 10 periods across

the distribution of the prior cumulative stock returns. The computation of these is identical to

the description in Section 4.1.1. The portfolio weight is again increasing and equal to one if the

cumulative return of the stock is negative, as in the last section. However, the portfolio weight does

not increase if the stock return has been high in the periods before. The result of this investment

strategy on the wealth of the investor can be seen on the right-hand side of the second row. We

see that wealth increases with past stock returns, however, the slope decreases since the portfolio

weight is reduced in case past stock returns are high. Finally, we see how a loss-averse investor

adjusts the consumption to prior stock market outcomes. In case stock market returns are low,

the wealth-consumption ratio, shown on the left-hand graph of the figure, adjusts upward. The

slope of the curve decreases in absolute value across the return distribution, with the main effect

being found around the center. The impact on consumption levels can be seen in the graph on the

right-hand side of the third row of Figure 8. We see that consumption levels are constant at the

center of the distribution, showing that the investor tries to maintain a consumption level at the
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Figure 8: This figure shows the performance of the NN methodology in the case the loss-averse
investor solves the consumption and portfolio problem and the economy follows an i.i.d. process.
The first row shows the violin plots for the optimal portfolio weights across time on the left-hand
side and the optimal consumption levels across time on the right-hand side. In the second row, we
plot the portfolio decisions and values of wealth as a function of realized cumulative returns. We
show the decisions across all test sequences after 10 periods, i.e., halfway through the 5 years. We
compute the cumulative stock return for each sequence and create 100 bins, which form the basis
for the histogram shown in grey in both graphs of the lower row. For each of the bins, we compute
the average portfolio weight that the investor chooses and plot these decisions as the black line.
The third row shows the consumption-wealth ratios across states on the left-hand side and the
consumption levels on the right.
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reference level even in the case of stock market losses. The result of this approach explains the

pattern observed in the graph on the first row, namely that the variation is large for later periods,

where the decrease in consumption levels in case of bad stock returns cannot be avoided anymore.

4.2 Predictable Returns

4.2.1 Maximizing Utility of Terminal Wealth

We use the same data-generating process as described in Section 3.2. The results for this exercise can

be found in Figure 9. The first row of the figure shows the distribution of terminal wealth across

the 100,000 sequences of the test dataset on the left-hand side and the distribution of portfolio

weights on the risky asset across time on the right-hand side. We see a spike in the distribution of

terminal wealth at the value of about 1.5, which is above the reference level. We can also see that

the probability of a realization below the reference level is small since the overwhelming part of

the distribution lies to the right of the starting wealth of one. On the right-hand side of row one,

we see that the portfolio weights are concentrated mostly in the tails of the distribution, i.e., are

either close to zero or close to one.

This brings us to the second row of Figure 9 where we can see the portfolio decisions after 10

periods across the states of the economy represented by different values of the log dividend-price

ratio. We compute the average portfolio weight for each of the 100 bins that form the histogram

of the value of the log dividend-price ratio at the beginning of period 11. The graph shows that

as in Section 3.3, the investor increases the portfolio weight when future expected returns go up.

However, the adjustment is much more pronounced than in the CRRA case, i.e., the loss-averse

investor does so more aggressively. This explains the concentration of portfolio weights in the tails

that we observe in the graph on row one of the figure. Finally, we see the average value of starting

wealth across the different states of the economy after 10 periods on the right-hand side of the

second row in Figure 9. There is almost no impact as we see a only weakly decreasing function.

4.2.2 Solving the Consumption and Portfolio Problem

The results of this analysis can be found in Figure 10. The first row of the figure shows the

distribution of the portfolio weights across time on the left-hand side as well as the distribution

of the consumption level on the right-hand side. The portfolio weights exhibit the same behavior

as in Section 4.2.1, namely that the weights are concentrated at the lower or upper bound of the

distribution. On the right side, we see that the average levels of consumption are flat across time,

with the distributions skewing to the top and exhibiting a low number of realizations that are below

the reference level.
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Figure 9: This figure shows the performance of the NN methodology in the case the loss-averse
investor maximizes the utility of terminal wealth and the economy follows the VAR process of
Equations (17) and (18). The upper row shows the distribution of the terminal wealth for each
sequence of the test data when using the policy function in light blue. The right side of the upper
row shows a violin plot for the portfolio weights at each point in time. In the second row, we plot the
portfolio decisions and values of wealth as a function of the log dividend-price ratio. We show the
decisions across all test sequences after 10 periods, i.e., halfway through the 5 years. We separate
the value for the log dividend-price ratio at the beginning of the next period for each sequence and
create 100 bins, which form the basis for the histogram shown in grey in both graphs of the lower
row. For each of the bins, we compute the average portfolio weight that the investor chooses and
plot these decisions as the black line.
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Figure 10: This figure shows the performance of the NN methodology in the case the loss-averse
investor solves the consumption and portfolio problem. The first row shows the violin plots for
the optimal portfolio weights across time on the left-hand side and the consumption level across
time on the right. The second row shows the portfolio decisions across states of the world. The left
side determines the states of the world using prior realized cumulative stock returns, the states are
measured using the log price-dividend ratio on the right. The second row shows the consumption-
wealth ratio on the left side and the consumption level across the distribution of prior cumulative
returns and the last row shows the same consumption decisions across values of the log dividend-
price ratio.
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In row two of Figure 10 we see the portfolio decisions across the states for the 100,000 sequences

in the test dataset. We have the average portfolio weight on the stock in each bin of the histogram

for the prior realized cumulative stock market return after 10 periods. We see that the weight is

going down as a function of this cumulative return. This can be explained by the mean-reverting

property of the return dynamics of the model in Equation 17. The same explanation can be used

to interpret the observations on the right-hand side of the same row in the figure. We see that the

portfolio weight increases in case of an increase in the log dividend-price ratio. As in the results

discussed in Section 4.2.1 we see a quick adjustment from close to zero to close to one in case the

log dividend-price ratio increases above about -3.8.

The third row of Figure 10 shows the results for the consumption decisions across the states of the

world which are measured as prior cumulative stock returns. We see the results for the consumption-

wealth ratio on the left-hand side and the corresponding consumption levels on the right-hand side.

We observe a U-shaped relation between the prior returns and the consumption-wealth ratio. This

can be explained by the fact that the investor targets a reference level of wealth. As shown on

the right-hand side, the consumption level is almost flat in the left part of the distribution and

only increases after the prior cumulative returns become positive. In the case of large positive

prior returns, we see that the consumption-wealth ratio as well as the consumption level increases

considerably.

The last row of Figure 10 shows the consumption decisions as a function of the log dividend-price

level. The relationship is very similar to the decisions across prior cumulative returns. We do not

observe the striking difference as in the case when deciding on the portfolio weight.

5. CONCLUSION

We propose a new forward-solving algorithm to solve life-cycle models. Our method uses neural

networks to train the parameters of a policy function that returns the optimal decisions as a function

of state variables. The main advantages are that we do not need to specify a functional form for

these policy functions as in, e.g., Chacko et al. (2005) since the flexibility in the activation function

allows the algorithm to adapt the form of the policy function to the problem at hand. In addition,

the setup allows the solution to go forward in time, which makes the inclusion of endogenous state

variables, like in the case of a loss-averse investor, easy to handle. Finally, our method only relies

on the ability to simulate the economic model as well as computation of the criterion function and

is therefore straightforward to apply to more complicated setups as discussed in this paper.

We show that the NN methodology returns solutions that are very close to the optimal solutions

in cases where we can compute closed-form approximations of these optimal solutions. We also

show that the algorithm can perform this well even if we do not use prior knowledge to set up the

policy function. All the results we show in Section 3 pass redundant state variables to the policy
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function as, e.g., the wealth level, which is not important in the CRRA case. This shows that the

neural network can learn to distinguish between important and redundant states.

Finally, we apply the NN methodology to cases where there are no known closed-form solu-

tions. In particular, we analyze the decisions of a loss-averse investor who is short-sale and credit-

constrained, finitely lived, and can only make decisions in discrete intervals.

27



A. IMPLEMENTATION OF THE NETWORK

We use the functional API in Keras, which is implemented within the Tensorflow platform in

Python. The first step is to simulate a large time series of the economic model, i.e., we construct a

Θ × S matrix containing asset returns, state variables, and information on the respective time to

maturity. We set Θ = (T + 1) ·Nsim ·Nbatch with Nsim denoting the number of sequences included

within each batch and Nbatch denotes the sum of the number of batches used for training and

validation.

The second step is to prepare the simulation data in a way that can be used by the Keras

API. We use the keras.utils.timeseries_dataset_from_array method for this. We pass the

simulated time series to the method and it partitions the data into batches of size Nsim×T +1×S.
The training data has Ntrain number of batches and the validation data has Nval number of batches.

In addition to the simulated data, we pass a starting value for the wealth at time t = 0, so that the

output is conditional on this starting value.

Setting up the network proceeds as follows. Keras sets up a symbolic version of the network

that allows for a flexible number of sequences within each batch. This results in the construction

of tensors of size None × T + 1 × S for the input data, with None denoting the flexible number

of sequences used. Since we need to pass the starting wealth in a conformable tensor, the starting

wealth will be included in a None× 1 tensor.

The next step consists of setting up the layers containing trainable parameters. Since the values

of the parameters do not vary across time points, we set up the layers outside the for loop that

iterates over time. Each layer is set up using the method keras.layers.Dense, where we pass the

number of nodes used as well as the information on the activation function. These layers are then

used within a for loop that collects and uses the information over the time periods. At each point

in time, we pass the respective state variable values concatenated with the current value for the

wealth, resulting in a None× S + 1 tensor, to the hidden layers. The outputs of the hidden layers,

which are None×Nnodes are then passed to the respective decision layers, which return a None×K
and a None × 1 tensor, respectively. The final step in the for loop is to update the wealth value,

which is done using a custom layer, using the keras.layers.Lambda method. This custom layer

uses the concatenated information on the value of the wealth at the beginning of the period, the

output of the consumption and portfolio decision layer, and the value for the next period asset

returns (and possibly income), as input and returns a None × 1 tensor containing the wealth at

the end of the period.

The final step is the construction of the loss function that is used to train the model to maximize

the expected utility of the investor. This loss function accepts a tensor of dimension None× T + 1

containing the information on the consumption levels at each point in time as well as the value of

terminal wealth. The loss function computes the utility values for each of these values, computes the
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mean over the dimension that contains the sequences within the batch, i.e., the None dimension,

and finally computes the sum over the time dimension, resulting in the expected utility given the

consumption and portfolio decisions. The total loss at the end of each epoch is computed as the

average loss across the batches, with the optimization method computing the gradients for each

value within the batch.

After compilation of the network, using the method compile, the method fit optimized the

network parameters and fills the symbolic representation of the tensors with values, i.e., changes

the None to the number of sequences within each batch. To fit the network, we also use the callback

option and select the parameters that result in the best validation value.
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